
PHP Solutions Nr 1/2006www.phpsolmag.org2

Techniki Glade

PHP Solutions Nr 1/2006 www.phpsolmag.org 3

Techniki

For these purposes, there's Glade,
a graphical tool built exactly to help
the developers to design the inter-

face of applications written in languages
that use GTK (C, Python, PHP or Perl).

The sole purpose of the tool is making
the interface building easier; it's not a code
editor or IDE.

Using Glade, we can easily create
windows, lists, buttons, boxes and organi-
ze them in a clear and simple way. At the
end, the interface schema will be saved in
a file .glade, that is an XML file containing
the visual structure of the interface.

The basics of Glade
The Main window of Glade has the basic
options (Open and Save), the Project
Options and a list of windows containing
our projects. The Edit menu has Cut,
Copy and Paste options, while the View
menu items allow to show or hide the pop-
up windows (Palette, Properties, etc). See
Figure 1.

Designing a GTK application interface by hand
is not a very hard task and you may give your
application a better peformance. However,
it takes a lot of time, that as a professional
developer you may be lacking of. Therefore,
a graphical tool becomes necessary...

The Palette
Each Glade project starts with a Window.
The component that represents the win-
dow is GtkWindow and it's the first item of
Glade's Palette (see Figure 2). After the
first click on the Windows component,
the first window comes up and then we
can start using other widgets like GtkHBox
(horizontal box), GtkVBox (vertical box),
GtkFixed (allows absolute positions),
GtkLabel (text label), GtkEntry (input bo-

Generating invoices with
Glade
Pablo Dall'Oglio

W SIECI

NA CD

1. http://glade.gnome.org
– the home page of
the Glade project

2. http://http://gladewin
32.sourceforge.net/
– Glade for Windows

3. http://

Pablo Dall'Oglio (pablo@dalloglio.net)
is the author of the first book about
PHP-GTK in the world. He is also
the author of Agata Report (http:
//www.agatareports.com), Tulip Editor
(http://tulip.solis.coop.br), as well as the
Coordinator of GNUTeca project (http:
//www.gnuteca.com), an open source
software for library management.

O autorze

PHP Solutions Nr 1/2006www.phpsolmag.org2

Techniki Glade

PHP Solutions Nr 1/2006 www.phpsolmag.org 3

Techniki

xes), GtkRadioButton, GtkCheckButton,
GtkFrame, GtkImage, GtkComboBox,
GtkToolBar, etc.

The components list is separeted
into pages (Basic, Additional and Depre-
cated). The Deprecated widgets nclude
the old Gtk1 widgets (GtkFileSelection,
GtkCTree, GtkCList, and so on).

The Widget Tree
The Widget Tree (View menu => Show
Widget Tree) is a very nice tool that shows
a hierarchy tree of all widgets you're using
in your application. Each widget is a node
in this tree (see Figure 3). The parent/child
relationship tells us, which widget is inside
another one. This feature is especially
usefull to locate widgets, because many
times the widget we want to change the
properties of is not visible (as in the case
of structural widgets like GtkHBox'es and
GtkVBox'es). A simple right click on any
widget in the tree allows you to select it.
Then, you can go the the properties win-
dow, which content changes according to
the selected widget.

The Project Window
We put our widgets into the Project Win-
dow. In the first window on the Figure
4 we have a GtkWindow with a GtkFixed
component inside it. The GtkFixed com-
ponent allows to put the components like
buttons, labels, radiobuttons and check-
buttons in absolute coordinates inside
the window. In the second window on the
same figure we used a different aproach,

putting a GtkVBox (Vertical Box) inside the
window first, and then placing a GtkHBox
(Horizontal Box) in the second row of the
Vertical Box. The said Horizontal Box will
then contain a GtkLabel in its second co-
lumn and a GtkEntry in the fourth.

The Properties Window
The Properties window (see Figure 5) is
the place where you set the properties of
the selected widget. Its content depends
on the widget you choose. Clicking on any
widget on the screen causes this window
to display properties of the class of the
selected widget.

The Properties window has several
tabs. The first one, called Widget defines

Installation
As a part of the GNOME environment, Glade should be present in the Linux distributions
which contain GNOME. So, if you don't have it installed, search for the proper package in
your distro first. If you won't find it there (or you would like to upgrade to the new version),
get to the homepage of Glade (glade.gnome.org), download the sources and compile it in
a standard way:

./configure

make

make install

Also, the Glade package should contain the INSTALL file, which provides more deta-
ils on some non-typical installations.

In the Windows environment the things are very simple: just download Glade
from http://gladewin32.sourceforge.net and install it.

Requirements
Glade needs GTK-2 installed. In order to use it with PHP, you will also need the PHP-GTK
extension, which is available at the address of http://gtk.php.net. Furthermore, your PHP
must be of the PHP5 branch.

Figure 1. The Main window of Glade

Figure 2. Glade's Palette

Figure 3. Widget Tree

Glade

PHP Solutions Nr 1/2006www.phpsolmag.org4

Techniki

the basic properties of the selected widget.
The most important feature of each widget
is its name, because it's the property we
refer the widget by in the application.

Other properties we can define in the
Properties window are, for example, a la-
bel and align for a GtkLabel, a stock icon
and a label for a GtkButton, the maximal
length and the visibility of GtkEntry, and
so on.

The second Tab (Packing) shown on
the Figure 6 depends on the way you pack
your widgets (in the image below, we have
two modes). When the widget is packed
inside a GtkFixed container, that allows
absolute coordinates, it'll permit to chan-
ge the widgets position (X and Y). When
a widget is packed inside a GtkVBox or
GtkHBox container, we'll be able to change
other properties like Expand (if the widget
will expand within the container's limit) or
Fill (if the widget fills all of the containers'
area), and so on.

On the same Figure you will see the
third Tab (Common), that contains shared
properties among the widgets. Those
include the features like Width, Height, vi-
sibility, ability of the widget to have a focus
on, etc.

The Fourth Tab (Signals) allows you
to connect the widget signals (clicked,
pressed, released in the case of GtkBut-
ton) to a specific callback. This callback is
a method or a function that must be inclu-
ded in the code of your application (it may
be done later). When the widget emits
a signal, the callback with the given name
is executed. There's no need to connect
the signals in glade, as it is being usually
done later in the code.

The Glade XML File
When you save your file in Glade, it gene-
rates an XML file containing the the visual
structure of the project (Listing 1). It conta-
ins the names of the widgets, their proper-
ties like dimensions, labels, icons, the way
each widget will be packed, all registered
callbacks and more. The XML tags are
used to define the properties of each wid-
get, and the hierarchy of tags represents
containers and their children.

Then, the Glade project file can be
used in your application. It has to be pro-
cessed through the GladeXML class that
parses the XML content, making the wid-
gets available to our application. For the
latter purpose we use a method named
get_widget(). The only thing we have to

Listing 1. The Glade XML File

<?xml version="1.0" standalone="no"?> <!--*- mode: xml -*-->

<!DOCTYPE glade-interface SYSTEM "http://glade.gnome.org/glade-2.0.dtd">

<glade-interface>

<widget class="GtkWindow" id="window1">

 <property name="visible">True</property>

 <property name="title" translatable="yes">window1</property>

 <property name="type">GTK_WINDOW_TOPLEVEL</property>

 <property name="window_position">GTK_WIN_POS_NONE</property>

 <property name="modal">False</property>

 <property name="resizable">True</property>

 <property name="destroy_with_parent">False</property>

 <property name="decorated">True</property>

 <property name="skip_taskbar_hint">False</property>

 <property name="skip_pager_hint">False</property>

 <property name="type_hint">GDK_WINDOW_TYPE_HINT_NORMAL</property>

 <property name="gravity">GDK_GRAVITY_NORTH_WEST</property>

 <property name="focus_on_map">True</property>

 <child>

 <widget class="GtkVBox" id="vbox1">

 <property name="visible">True</property>

 <property name="homogeneous">False</property>

 <property name="spacing">0</property>

 <child>

 <placeholder/>

 </child>

 <child>

 <widget class="GtkHBox" id="hbox2">

 <property name="visible">True</property>

 <property name="homogeneous">False</property>

 <property name="spacing">0</property>

 <child>

 <widget class="GtkLabel" id="label1">

 <property name="visible">True</property>

 <property name="label" translatable="yes"> Code: </property>

 <property name="use_underline">False</property>

 <property name="use_markup">False</property>

 <property name="justify">GTK_JUSTIFY_LEFT</property>

 <property name="wrap">False</property>

 <property name="selectable">False</property>

 <property name="xalign">0.5</property>

 <property name="yalign">0.5</property>

 <property name="xpad">0</property>

 <property name="ypad">0</property>

 <property name="ellipsize">PANGO_ELLIPSIZE_NONE</property>

 <property name="width_chars">-1</property>

 <property name="single_line_mode">False</property>

 <property name="angle">0</property>

 </widget>

 <packing>

 <property name="padding">0</property>

 <property name="expand">False</property>

 <property name="fill">False</property>

 </packing>

 </child>

 </widget>

 <packing>

 <property name="padding">0</property>

 <property name="expand">True</property>

 <property name="fill">True</property>

 </packing>

 </child>

 <child>

 <placeholder/>

 </child>

 </widget>

 </child>

Glade

PHP Solutions Nr 1/2006 www.phpsolmag.org 5

Techniki

do is to know the name of each widget we
want to retrieve from the Glade project file.

The first example
In our first practical example, we'll design
a window (GtkWindow) with a vertical box
inside (GtkVBox). In the first position of the
vertical box, we'll place a text label, which
will contain the Type your Name phrase in
bold. The second position will be an input
entry called name. In the third one, we'll put

a button named Print, while the fourth po-
sition will contain another text label of the
name result. See the Figures 7 and 8.

The program works this way: the user
can type anything inside the name input
text. When he clicks on the Print button,
the text Hello <name> is set in the result
text label, where <name> is the expression
typed in the name field. See the Figure 9.

This example is very simple, but it's
very good to illustrate the essential abi-

lities of Glade and joining the generated
interface with our application. Pay atten-
tion on how we reuse the file designed
in Glade. On the Listing 2 we show the
code that allows this. First we instantiate
an object of the GladeXML class as $glade.
Then, using the object's method named
get_widget() we get three widgets we
created in Glade: name, print and result
and create three objects: $name, $print
and $result, respectively. Then, using
those objects we can do anything with
the widgets they represent: change their
properties, connect their signals, show or
hide them, and so on.

The Application
It's time to create our main application:
The Invoice Generator. We'll basically use
Glade to design the interface. Then we'll
create the source code that will make use
of our generated interface (as shown in
the previous example). It will also employ
the FPDF library for the purpose of gene-
rating the invoices in the PDF format.

FPDF is an open source library which
allows to generate PDF files with pure
PHP. It has lots of facilities to draw ima-
ges, lines, text and so on.

The Main Window
We'll start with designing the main window

Listing 2. Using the Glade file in a PHP application

<?php

instantiate the glade object
$glade = new GladeXML('exemplo1.glade');
get the name input entry

$name = $glade->get_widget('name');

get the print button
$print = $glade->get_widget('print');

get the result label

$result = $glade->get_widget('result');

connect the print button
$print->connect_simple('clicked', 'onPrint');

function onPrint(){
 global $name, $result;

 # get the typed text

 $text = $name->get_text();

 # set the result label

 $result->set_text("Hello {$text}");

}

Gtk::Main();

?>

Figure 5. The Properties window for GtkEntry, GtkLabel and GtkButton

Glade

PHP Solutions Nr 1/2006www.phpsolmag.org6

Techniki

of the interface of our application (see Fi-
gure 10), which is the first element of the
palette shown on the Figure 11. As soon
as you click on the GtkWindow button,
the first window will appear. Then we can
start placing widgets inside the window.
GtkWindow accepts just one widget inside
it, so you must care about a kind of a wid-
get you add: it must be a container, and
this means widgets that inherit from the
GtkContainer base class. Therefore, you
can use, among others, vertical boxes
(GtkVBox), Horizontal boxes (GtkHBox),
frames (GtkFrame) or the widget named
GtkFixed. We'll use the last one, as it al-
lows us to position widgets with absolute
coordinates into its area.

Adding an Image
Let's begin placing widgets in our main
window. The first one will be a logo. We'll
do this using the button of the palette that
looks like a drawing and represents the
GtkImage widget. We can load almost all
popular formats, including PNG, JPG,
XPM and many others. GtkImage also sup-
ports transparency. So, let's just choose
GtkImage from the Palette, and click again
at the position inside the GtkFixed area
you want to place it at. Then we change
the icon property of the GtkImage to select
an image file (see Figure 13). There's not
much to do with the image besides adju-
sting its position on the screen, that we
can achieve using the mouse or editing
the properties of the Packing tab.

Adding a Label
The next thing to do is to add the text
labels (GtkLabel). One of the great news
in GTK-2 is the Pango framework which
makes enables us to use a markup langu-
age to define fonts, sizes, color and styles,

because it adds lots of flexibility to the pre-
sentation of text.

To put a GtkLabel component inside
our GtkFixed area, we just need to click
at the GtkLabel component and then click
at the place we want to put it. Then, we
can start editing its Label property, where
we can use the new markup language
(remember to turn on the button Use Mar-
kup). See the Figure 15.

Using the definition <span font_

desc="Times Bold Italic 10"> we
define the font attributes. Using <span

foreground=red> we set the color, and

Listing 3. Invoice generator in PHP
(Invoice.php)

<?

/**

* Class Invoice

* Deals with interface and starts the invoice generation

*/

final class Invoice extends GladeXML{
 private $invoice; // invoice object

 private $taxes = 0.05; // 5%

 private $shipping_fee = 0.4; // $ 0.4 per unity

 private $amount = 0; // quantity of items

 /**

 * Constructor Method

 * Reads the interface and connects the signals

 */

 public function __construct(){
 // Call GladeXML Constructor Method

 parent::__construct('interface.glade');

 // define the standard for calculations

 setlocale(LC_ALL, 'POSIX');

 // Connect the action buttons

 $this->saveButton->connect_simple('clicked',array($this,'saveInvoice'));
...

 // define the invoice date as today

 $this->invoiceDate->set_text(date("Y-m-d"));
 // creates the model to store the data

 $this->model = new GtkListStore(Gtk::TYPE_STRING, Gtk::TYPE_STRING,
 Gtk::TYPE_STRING, Gtk::TYPE_STRING);

 $this->itemsList->set_model($this->model);

 // creates the columns

 $column1 = new GtkTreeViewColumn();
...

 // create the cell renderers

 $cell_renderer1 = new GtkCellRendererText();
...

 // pack one cell renderer per column

 $column1->pack_start($cell_renderer1, true);

...

 // define the indexes

 $column1->set_attributes($cell_renderer1, 'text', 0);

...

 $this->itemsList->append_column($column1);

...

 // define the titles of the columns

 $column1->set_title('Code');

...

 }

 /**

 * Method __get()

 * Returns a glade object whenever a property doesn't exist

 */

 public function __get($property){
 // retrieve the object from glade

 return parent::get_widget($property);

Figure 6. The Properties window: Packing, Common and Signals tabs

Glade

PHP Solutions Nr 1/2006 www.phpsolmag.org 7

Techniki

using , <i> or <u> we define the style
(bold, italic or underline). This markup
language is very close to HTML. It is de-
scribed in detail (both Pango API and all
keywords we can use) at the address of
http://developer.gnome.org/doc/API/2.0/
pango/PangoMarkupFormat.html.

This way, we'll add the labels conta-
ining the texts Customer, Name, Address,
Invoice, Date, Product, Code, Description,
Quantity, Price, SubTotal, Taxes, Shipping
and Total.

Adding a Text Entry
The next step is to add the text entry
(GtkEntry) widgets. We'll start with the
one called customerName (Figure 17). Then
we'll adjust its absolute position using the
Packing properties and its size, using the
Common features. We'll repeat this step
for other text entries: customerAddress,
customerPhone, productCode,
productDescription, productQuantity,
productPrice, subTotal, Taxes, Shipping,
Total, invoiceNumber and invoiceDate.

Adding a Button
Now, let's place some action buttons in
our interface. The first one will use a stock
image (+Add) and will be called addButton.
This button will be responsible for reading
the product information: code, description,
quantity and price from the text entries
and adding these data to a list of items,
that will be created in the next step. The
interface we'll have another action but-
tons, but there's no need to replicate the
explanation for each button. We'll explain
all the interface ahead giving names for all
the widgets on the window.

Adding the TreeView
Finally, we'll add a GtkTreeView widget.
GtkTreeView is responsible for showing
both lists and trees. One of the most

Listing 4. Invoice generator in PHP (Invoice.php), continued

 /**

 * Method addItem()

 * Add an Item to the list

 */

 public function addItem(){
 $product = array(); // initiates the product array
 // get the data from screen

 $product[] = $this->productCode->get_text();

...

 // add the product to the model

 $this->model->append($product);

 // increments the amount

 $this->amount += $this->productQuantity->get_text();

 // calculates the subtotal

 $this->subTotal->set_text($this->subTotal->get_text() +

 $this->productPrice->get_text());

 // calculates the shipping cost

 $this->Shipping->set_text($this->amount * $this->shipping_fee);

 // calculates the taxes

 $this->Taxes->set_text($this->subTotal->get_text() *

 $this->taxes);

 // calculates the total

 $this->Total->set_text($this->subTotal->get_text() +

 $this->Shipping->get_text() +

 $this->Taxes->get_text());

 // clear the product data

 $this->productCode->set_text('');

...

 // focuses the product code

 $this->window->set_focus($this->productCode);

 }

 /**

 * Method clearItems()

 * clear the Items list

 */

 public function clearItems(){
 // clear the items

 $this->model->clear();

 $this->amount = 0;

 // clear the subtotals,...

 $this->subTotal->set_text(0);

...

 // increments the invoice's number

 $this->invoiceNumber->set_text($this->invoiceNumber->get_text() + 1);

 }

 /**

 * Method saveInvoice()

 * Generate the invoice

 */

Figure 7. Making our first example

Glade

PHP Solutions Nr 1/2006www.phpsolmag.org8

Techniki

important features of GtkTreeView is the
complete separation of the data model
from its visualization. So Glade can pla-
ce an empty GtkTreeView on the screen
(Figure 21), but the data model can only

be created inside our code, using the
structures (strings, arrays) of the choosen
language (in our case, PHP). We will use
GtkTreeView in the list mode, and then add
the columns inside our application.

The Main Interface
Our interface is complete, we present it
on the Figure 22 (in the edition mode) and
on the Figure 23 (as seen in the working
application). In the header, we placed the
logo of the Gnome Foundation, the title of
the program and the address, formatted
using the new Pango markup language.
Also, we have the Invoice Number and the
Date. In the Customer section we have the
labels and text entries for the Customer's
Name, Address and Telephone. In the

Listing 5. Invoice generator in PHP (Invoice.php), continued

 public function saveInvoice(){
 // include our class for Invoice Generation

 include_once('InvoicePdf.class.php');

 // instantiates the invoice object

 $this->invoice = new InvoicePdf();
 // define the invoice's number and date

 $this->invoice->setNumber($this->invoiceNumber->get_text());

 $this->invoice->setDate($this->invoiceDate->get_text());

 // creates the customer object

 $customer->name = $this->customerName->get_text();

...

 // define the invoice's customer

 $this->invoice->setCustomer($customer);

 // loop all the products

 $iter = $this->model->get_iter_first();

 while ($iter){
 $code = $this->model->get_value($iter, 0);

...

 // add the product data to our invoice's object

 $this->invoice->addItem($code, $description, $quantity, $price);

 $iter = $this->model->iter_next($iter);

 }

 // define the footer information

 $this->invoice->setFooter($this->subTotal->get_text(),

...

 $this->Total->get_text());

 // ask the user to save the file

 $dialog = new GtkFileChooserDialog('Saving...', NULL,
 Gtk::FILE_CHOOSER_ACTION_SAVE,array(Gtk::STOCK_OK,Gtk::RESPONSE_OK,
 Gtk::STOCK_CANCEL, Gtk::RESPONSE_CANCEL));

 $response = $dialog->run();

 if ($response == Gtk::RESPONSE_OK){
 // generates the invoice, passing the filename

 $this->invoice->Generate($dialog->get_filename());

 }

 $dialog->destroy();

 $this->clearItems();

 }

}

// instantiate the interface

$application = new Invoice;
Gtk::Main();

?>

Figure 7. Making our first example, continued

Figure 10. An empty editor window

Glade

PHP Solutions Nr 1/2006 www.phpsolmag.org 9

Techniki

Product section we have the analogical
labels and entries for the Product Code,
Description, Quantity and Price, besides
the Add button wich reads the product da-
ta and adds it to the items list. In the bot-
tom-right corner we have SubTotal, Taxes,
the shipping costs and the Total field that
are automatically calculated. The taxes
are 5% and the shipping cost is $0,40 per
product unit. Each widget we present on
this Figure has its name written in red and
in the triangle brackets <>. Of course, tho-
se names won't be visible in the working
application.

Let's make the code: the Main
File
On the Listings 3, 4 and 5 we present
the main file containing our PHP code
(invoice.php). We start defining the class
invoice, that will extend the GladeXML
class. Let's take a look at its constructor
method. First, we call the constructor of
the class' parent (GladeXML), passing the
name of the file containing our interface,
interface.glade to the constructor as an
argument. Then we define the POSIX
standard for calculations.

The next important thing to do is to
connecgt the action buttons with the pro-
per callback functions. For this purpose,
we will use the connect_simple() method
of each button: $this->saveButton, $this-
>clearButton and $this->addButton,
which serve for saving data, clearing the

Figure 9. The complete example

Listing 6. The class responsible for the PDF generation (InvoicePdf.class.php)

<?

/**

* Class InvoicePdf

* Genereates the Invoice with the FPDF library

*/

class InvoicePdf{
 private $pdf; // Instance of FPDF class

 private $number; // Invoice Number

 private $customer; // Customer Object

 private $items; // array with the products

 /**

 * Constructor Method

 * Creates the PDF document

 */

 public function __construct(){
 // Define the fonts directory of FPDF

 define('FPDF_FONTPATH', getcwd() . '/fpdf/font/');

 // Load the FPDF library

 include_once 'fpdf/fpdf.php';

 // creates a new PDF document

 $this->pdf = new FPDF('P', 'pt', array(596,540));
 $this->pdf->SetMargins(2,2,2); // define margins

 }

 /**

 * Method setNumber

 * Define the Invoice Number

 */

 public function setNumber($number){
 $this->number = $number; // define the invoice's number

 }

 /**

 * Method setDate

 * Define the Invoice Date

 */

 public function setDate($date){
 $this->date = $date; // define the invoice date
 }

 /* Method setCustomer

 * Store an object with the customer's data

 */

 public function setCustomer($object){
 $this->customer->name = $object->name;

...

 }

 /* Method setFooter

 * Define the totals, subtotals, taxes...

 */

 public function setFooter($subTotal, $Taxes, $Shipping, $Total){
 $this->subTotal = $subTotal;

...

 }

 /* Method addItem

 * Add the product's data to the array of items

 */

 public function addItem($code, $description, $quantity, $price){
 $this->items[] = array($code, $description, $quantity, $price);
 }

/* Method Generate

 * Generates the PDF Document and saves it

 * to the file passed as the first parameter

 */

 public function Generate($archive){
 // create an empty page

 $this->pdf->AddPage();

 $this->pdf->Ln();

 $image = 'gnome.jpg';

Figure 13. Glade's palette

Glade

PHP Solutions Nr 1/2006www.phpsolmag.org10

Techniki

entries and adding a new item to the list,
respectively. Later, we will create the data
model for the list of items.

It's a pain to retrieve an object from
the glade file every time we need it. So,
to make the life easier we'll use a new re-
source from PHP5, the magic method __
get(). This method intercepts all attempts
to access an object property in order to
read its value.

We will use this method to determine
if someone demands an access to the
property that doesn't exist. In such a case,
PHP instantiates an object through the
get_widget() method of the GladeXML
class.

Therefore, when we need to ac-
cess the customerName object from the
glade interface, we just access $this-
>customerName. The same happens, when
we have to use the Save button: we just
use $this->saveButton.

Connecting of signals lets the user of
our application to make use of the buttons.
Whenever the users inputs the product in-
formation and clicks on the button Add ,the
method addItem() is executed, adding the
product information to the item list. When
the user clicks on the Save button, PHP
calls the method saveInvoice() and the
user is asked for the filename through the
GtkFileChooserDialog class. Then, the
class InvoicePdf, responsible for the PDF
creation, is instantiated, resulting in the
PDF file being generated. After generating
invoice, the invoice number is incremen-
ted and the list of items is cleared for the
next invoice.

The PDF Generation
This class is responsible for the PDF cre-
ation (Listings 6 and 7). It instantiates the
FPDF class and makes available some
methods like setCustomer() that defines
the customer's data (name, address and
phone), setFooter() that defines the
footer's information (subtotal, shipping
costs, taxes and total), addItem() that
adds a product to the list of products and
Generate() that reads all the information
and draw the PDF document using the
FPDF library. After that, it opens the result
in the favorite viewer.

The Invoice
Here we are with the result: our Invoice
(see the Figure 24). It's a PDF file con-
taining the company's logo, name and
address at the left top corner and the

Listing 7. The class responsible for the PDF generation (InvoicePdf.class.php),
continued

 $size = getimagesize($image);

 $width = $size[0];

 $height = $size[1];

 // draw the image at the x=7,y=7

 $this->pdf->Image($image, 7, 7, $width, $height);

 $this->pdf->SetLineWidth(1);

 $this->pdf->SetFillColor(247,247,247);

 $this->pdf->Rect(434,24,147,57, 'DF');

 // print Company's name and address. Print invoice number and date.

 $this->pdf->SetTextColor(0,0,0);

 $this->pdf->SetFont('Times','B',28);

 $this->pdf->Text(500,48, $this->number);

 $this->pdf->Text(140,48, 'Gnome Foundation');

...

 // print company's address, customer's data and the product's headers

...

 $row=244;

 if ($this->items){
 // print product by product

 foreach ($this->items as $item){
 $this->pdf->Text(14, $row, $item[0]);

...

 $this->pdf->Text(400,$row, $item[2]);

 $this->pdf->Text(500,$row, 'U$ ' . number_format($item[3], 2));
 $row += 16;

 }

 }

 $this->pdf->SetFillColor(247,247,247);

 $this->pdf->Rect(7,416,580,80, 'DF');

 $this->pdf->SetFont('Courier','B',14);

 // print the invoice's footer with totals and fees...

 $this->pdf->Text(440, 434, 'SubTotal: ' . $this->subTotal);

 $this->pdf->SetTextColor(222, 0, 0);

...

 $this->pdf->Output($archive);

 exec("gpdf $archive &"); // opens the PDF with your favorite viewer!

Figure 15. Glade's palette

Glade

PHP Solutions Nr 1/2006 www.phpsolmag.org 11

Techniki

invoice number and date at the right top
corner with a rectangle around. Below, we
have the Customer info (Name, Address
and Phone) inside a gray rectangle, and in
the middle of our Invoice we have the Pro-
ducts list (Code, Description, Quantity and
Price) with a header containing the names
of the columns inside a dark gray rectan-
gle. At the footer we have the SubTotal,
Taxes, Shipping and the Grand Total with
the colors identical to those used used in
the Glade interface.

Summary
Our Invoice Generator is ready and wor-
king, proving you, how easy it is to make
the Graphical User Interfaces using Glade.
Also, it dispells the myths telling, that PHP
is suitable for the server-side purposes
only. Joining PHP5, PHP-GTK and Glade
is a very good choice for any professional
software developer who wants to create
the Graphical User interfaces using the
widely accepted, tested technologies and
maintain flexibility of his (or her) projects.

Figure 17. Properties of the customerName text entry (GtkEntry)

Figure 19. Properties of the addButton button (GtkButton)

Figure 21. GtkTreeView widget in the List mode

Glade

PHP Solutions Nr 1/2006www.phpsolmag.org12

Techniki

Figure 22. The complete interface as seen in the editor

Figure 23. The complete interface as seen in the working application

Figure 24. The generated invoice

