
PHP Solutions Nr 1/2006www.phpsolmag.org2

Techniki PHP-GTK2

PHP Solutions Nr 1/2006 www.phpsolmag.org 3

Techniki

Please don't translate the
underlined text, unless it's marked
in yellow.

We will take a closer look on the most
outstanding features of this technology,
writing the real life example: an applica-
tion that allows simple management of
items (products) in the store. Beside PHP-
GTK2, it will make use of the new features
of PHP5 (as the new object model and
exception handling), and will store its data
in the SQL database.

The concept
Let's think of what we'll need for our appli-
cation. First of all, every GUI application
has its main window, that contains other
elements. In our case, those will consist
of three pull-down menus named File, Edit
and Help. All positions in our pulldown me-
nus will have icons beside the text. In the
first one, we will be able add a new item
(Add), edit an existing one (Edit), clear
the whole database (Clear) or quit the

PHP-GTK1 started a new way of thinking in PHP.
The language devoted for web applications
started to be widely used for writing the
standalone, client-side applications with
a Graphical User Interface (GUI). However, it is
the release of PHP-GTK2, which is a binding
between PHP5.1 and the Gtk-2.6 library, that can
start a real revolution.

program (Quit). The second one will allow
us to open a simple text editor, which may
be useful for taking notes about our stock.
The third one will contain a single option:
Help, which will pop up an About Dialog.
Being at the dialogs, we will also need
(among others) the information and qu-
estion dialogs for the Clear option from the
first menu, a more complex dialog for ad-
ding new products and editing the existing
ones, the file dialog and the independent
window for our text editor.

New features of PHP-
GTK2
Pablo Dall'Oglio

W SIECI

NA CD

1. http://gtk.php.net
– a homepage of the
PHP-GTK project

2. http://
www.agata.org.br
– Agata Project
– a CRM/ERP using
PHP-GTK

3. http:///
tul ip.sol is .coop.br

What you should know...
You should be skilled in PHP5 (with fo-
cus on the new object model and excep-
tions) and have some knowledge of GUI
building.

What we promise...
We will show, how to write a sample
application, that makes use of the new
features of PHP-GTK2

PHP Solutions Nr 1/2006www.phpsolmag.org2

Techniki PHP-GTK2

PHP Solutions Nr 1/2006 www.phpsolmag.org 3

Techniki

Let's start building
We will begin our work with writing our ma-
in class Application, which we present on
the Listing 1 and 2. At first, it will create the
main window, instantiating the GtkWindow
class as the window object, then set its
basic parameters (size, position and title).
Next, we will set the container, that organi-
zes the positioning of our widgets. For this
purpose, we will use the GtkVBox class,
which we'll instantiate as $vbox.

It's time for the pulldown menus
we've mentioned before. Here we are
with the GtkMenuBar class; we'll create its
object named $MenuBar. Next, using the
GtkMenuItem class, we'll create the menu
bar positions called File, Edit and Help.
They will be the separate objects, which
we'll not add to the window yet.

The Main Menu
The next thing we'll do is to create the re-
spective menus, that open when we click
at one of the mentioned positions. For
this, we have the GtkMenu class, which
we'll instantiate as $SubMenuFile. But wa-
it, we want the positions in those menus
to have icons! Fortunately, we don't have
to create them by ourselves: PHP-GTK2
gives us the Stock Images, that is: the set
of the essential, commonly used icons for
our buttons, menus, listings and others,
depicting the operations like save, open,
close, delete, add, clear, quit, yes, no, etc.
They have a clear naming convention,
so we don't need to worry in each case
about what icon to use. Each item belon-
ging to the GtkMenu will be an object of
the GtkImageMenuItem class, with an icon
passed as an argument to its constructor.
If you miss the icon name, the position will
simply have no picture. In the menu File
we add the positions called Clear, Add,
Edit and Quit. Clicking on the first one
will start the database, drop the products
table and create it again. The second one,
Add, will show the user a dialog containing
a form allowing to add a product, while the
third one, Edit, will show him the list of
products, that allows to edit a chosen po-
sition. Finally, clicking on the position Quit
will cause application to stop its operation.

In the next menu, called File, we will
have only one option: Edit. It will start the
embedded text editor. Similiarly, there will
be one and only option in the Help menu,

and it will be called Help. Clicking on it
will pop up the well-known About dialog
window.

All menus are shown on the Figure 1.
The next thing is to connect the si-

gnals send by the menu items on the
event of being clicked with the callback
methods, that will perform the revelant
operations. Those methods will be known
as onClear(), onAdd(), onList(), onEdit()
and onHelp(). We do this using the
connect() method of each item. Then we'll
add the items to their respective menus.
The last thing to do about the menus is
to append the created menus to the Main
Menu. We'll do this in two steps: first, we
will append the submenus for each menu
bar position using the set_submenu() me-
thod of each of the latter, and second, we-
'll append the three positions to the Main
Menu Bar ($MenuBar).

The last things left in the constructor
are: to add our $vbox container to the
window, add the widgets to it, and show all
elements of the window with the $window-
>show_all() method.

The Callback Methods and the
Message Dialogs
Now, it's a high time to start creating the
callback methods for the respective menu

items, that we've mentioned before. As the
first, we will create onClear().

In the beginning, it will check whether
the database we want to clear exists.
Then, it should ask us, if we really want to
remove all stored records. For this, PHP-
GTK2 offers us a flexible Dialog Box (Gtk-
MessageDialog), that can be used in many
situations (warning messages, error mes-
sages, confirmation dialogs, input boxes
and so on). We will use it into the MODAL
mode, what means, that it persists on the
screen and prevents us from performing
other operations within our application till
it's closed. We'd like to have a question
mark on it: no problem, PHP-GTK2 gives
us the ability to use the very stock icons
we used before, and some sets of the
stock buttons as well. For the latter, we'll
need the YES/NO buttons. See the Figure
2. Then we'll wait for the user's response:
should it mean allowing us to remove the
database, we'll make a connection to our
SQLite base, drop the products table and,
finally, create it again. After the database
is properly cleared, the user will see ano-
ther dialog, shown on the Figure 3, that

Figure 1. Menus of our application

Figure 2. A dialog letting us to decide,
whether we want to restart a database

Figure 3. Information, that the database
has been cleared

PHP-GTK2

PHP Solutions Nr 1/2006www.phpsolmag.org4

Techniki

informs about the success.
Adding New Products: The
Products Form
The next callback method is onAdd(),
which allows us to add the new item. It
invokes the dialog shown on the Figure
4. In fact, all this method does is to make
use of a class named ProductNew, that
is stored in the file ProductNew.class.php
(see Listing 3). It would be too lengthy and
boring to describe it in the full detail, so
we'll focus on the most important issues
related to it.

First, in its constructor it creates the
same object of the GtkWindow class as we-
've seen before. It uses labels (GtkLabel)
for showing descriptions. The most intere-
sting thing about it is, that we can format
their contents. In PHP-GTK2 it's much
easier and more flexible than in PHP-
GTK1, when it took much effort to make
the text look like we wanted to (even for
the simple effects as Bold, Italic, Underline
or colors). PHP-GTK2 uses Pango, a GTK
open-source framework that deals with all
layout and rendering stuffs. With Pango
it's possible to use a markup language
derived from SGML to format text for exhi-
bition, a simple way to define style and co-
lors (see Figure 5). Despite it's not shown
here, it's possible to write text vertically
or using angles (expressed in degrees).
In our dialog, we will create the following
labels: Code, Description, Amount, Unit,
Cost and Price.

The bottommost label will contain
a hint for the user, starting that the fields
Code, Description and Price must be filled.
We would like, however, that it wouldn't be
visible all the time, as more experienced

History
In its first generation, PHP-GTK was
a language binding beween PHP-4.x and
Gtk-1.2.
This version, that is still used by the
majority of projects, was hindered by the
deficiencies of the PHP4's object model.
As soon as PHP5 was launched, The
PHP-GTK creator's Andrei Zmievski,
started a hard task to rewrite the code
base of PHP-GTK to use the new faci-
lities of PHP5 and Gtk2. The main part
of the work was to take advantage of
the new PHP's object model and Gtk2's
new features, that involves the new fle-
xible type system (as PHP) and a good
extensibility, what makes easier the task
of mapping Gtk2 API onto PHP's object
model. It's important highlight that PHP-
GTK2 is a work in progress that is on an
alpha stage.

Listing 1. The Main Interface: the main window of our application, stored in the file
product.php

<?php

// Class Application – encapsulates the main interface

class Application{
 private $window;

 function __construct(){
 // creates the main window and sets its parameters

 $this->window = new GtkWindow;
...

 $vbox = new GtkVBox;
 // creates the menubar

 $MenuBar = new GtkMenuBar;
 // menu options

 $MenuFile = new GtkMenuItem('_File');
...

 // sub-menu File with stock-itens

 $SubMenuFile = new GtkMenu;
 $ItemFile1= new GtkImageMenuItem(GTK::STOCK_CLEAR);
...

 $ItemFile4= new GtkMenuItem;
 $ItemFile5= new GtkImageMenuItem(GTK::STOCK_QUIT);
 // connect menu options to the methods

 $ItemFile1->connect('activate', array($this, 'onClear'));
...

 $ItemFile5->connect('activate', array($this, 'onQuit'));
 // append the items to the sub-menu

 $SubMenuFile->append($ItemFile1);

...

 // sub-menu edit

 $SubMenuEdit= new GtkMenu;
 $ItemEdit1= new GtkImageMenuItem(GTK::STOCK_EDIT);
 $ItemEdit1->connect('activate', array($this, 'onEdit'));
 $SubMenuEdit->append($ItemEdit1);

 // sub-menu help

...

 $MenuFile->set_submenu($SubMenuFile);

...

 $MenuEdit->set_submenu($SubMenuEdit);

...

 $this->window->add($vbox);

 $vbox->pack_start($MenuBar, false, false);

 $this->window->show_all();

 }

 // Method onClear – creates the database structure

 function onClear(){
 if (file_exists('data.db')){
 $dialog = new GtkMessageDialog(null, Gtk::DIALOG_MODAL,
 Gtk::MESSAGE_QUESTION, Gtk::BUTTONS_YES_NO,'Do you want to restart

 the database ?');

 $response = $dialog->run();

 $dialog->destroy();

 if ($response == Gtk::RESPONSE_YES){
 // drop the table products

 $conn = sqlite_open('data.db');

...

 }

 else if ($response == Gtk::RESPONSE_NO){
 return;
 }

 }

 // create the table products

 $conn = sqlite_open('data.db');

 $sql = 'CREATE TABLE products (code,description,' .'unit,amount,cost,pric

e)';

 sqlite_query($conn, $sql);

PHP-GTK2

PHP Solutions Nr 1/2006 www.phpsolmag.org 5

Techniki

users might not need it. With PHP-GTK2
it's no problem: we have the component
called GtkExpander, which is a container

allowing to expand or collapse its con-
tent. We will use it for our help label. Let's
declare an instance of GtkExpander class

first (we'll call it $expander), then create
a label named $help, and add the label to
$expander. By default, it will be expanded
(using the method set_expanded(true)).

Another widget we'll use is text entry
(GtkEntry) for inputting the text. We will
have a text entry for each label. Here,
PHP-GTK2 offers us a useful feature
called auto-completion. It allows to link
a GtkEntry widget with a GtkListStore,
a data model with possible values to be
used for auto-completion while the user
types, using an object of the third class
called GtkEntryCompletion. It's very com-
mon in Gtk applications, specially for File
Dialogs to suggest the files that matches
with the typed value (see Figure 6). In
our dialog, we'll use EntryCompletion
in the Unit field to list a set of common
used units. For this purpose, apart from
creating the object for the GtkEntry
($this->entries[3]), we will instantiate
the GtkListStore class as $store. Next,
we will add the common units using the
append() method of the $store object.
Then we'll create the object $completion
of the GtkEntryCompletion class , set the
$store object as its source of auto-com-
pletion data and, finally, apply the com-
pletion feature to the Unit entry, using the
set_completion() method of the entry.

The last thing we need is the Save
button, which will allow us to add the new
item to the database. For this purpose,
we will instantiate the class GtkButton (as
$button1). On the button, we will place
a stock icon depicting a diskette. Then,
we'll connect the clicked event of the
button with the callback method named
onSaveClick(). The latter will read the
values inputted in the form, store them
into the database and clear the form thro-
ugh another method we create, named
Clear().

Listing 2. The Main Interface: the main window of our application, continued

 // show the success message to the user

 $dialog = new GtkMessageDialog(null, Gtk::DIALOG_MODAL, Gtk::MESSAGE_INFO,
 Gtk::BUTTONS_OK, 'Database clear');

 $response = $dialog->run();

 $dialog->destroy();

 }

 // Method onAdd – creates the Products Form

 function onAdd(){
 include_once 'ProductNew.class.php';

 new ProductNew;
 }

 // Method onList– show the Products Listing allowing the user to change the

data

 function onList(){
 include_once 'ProductList.class.php';

 $obj = new ProductList;
 $obj->Show();

 $obj->showData();

 }

 // Method onEdit – Opens a little Text Editor

 function onEdit(){
 include_once 'TextEditor.class.php';

 new TextEditor;
 }

 // Method onHelp – Show the About Dialog

 function onHelp(){
 include_once 'AboutDialog.class.php';

 new AboutDialog('Products', 'This software is open-source');
 }

 // Method onQuit – Quit the Application

 function onQuit(){
 Gtk::main_quit();

 }

}

// creates a new instance of Application

new Application;
Gtk::Main();

?>

Figure 4. A form for adding a new product

Figure 5. Text effects in PHP-GTK2

PHP-GTK2

PHP Solutions Nr 1/2006www.phpsolmag.org6

Techniki

Show me the products or why we
like the trees
The next callback method in our Appli-
cation class is onList(), which is being
called when the Edit position in the File
menu has been clicked. It makes use of
another class, ProductList, stored in the
file ProductList.class.php. See Listing 4
and 5. There is no need to describe it in
detail, so, as in the cases of previous me-
thod, we will focus on its most important
components instead. The main task of
the class is to show the editable list of all
items in our store. On edition, it will upda-
te the data directly to the database. For
this purpose, we will use the brand new
GtkTreeView component that PHP-GTK2
provides us with, and which is the huge
step forward compared to the previously
existing, simple components as GtkCTree
and GtkCList. The latter widgets allowed
us to display only the trees (the first one,
see Figure 7) or lists (the second one,
Figure 8), GtkTreeView permits us to di-
splay both types, in the meanwhile grossly
extending their functionality. For example,
now we can add check boxes and images
to the items. What is interesting to us, both
tree and list can have columns, and the
data it contains may be edited, as it was
presented on a spreadsheet.

We will use GtkTreeView in the mode
of an editable list with columns. First, we'll
instantiate it as $this->list. Next, we'll
provide it with the data. It's important to
know, that the GtkTreeView allows the total
separation of Model, View and Controller
layers in the MVC (Model-View-Control-
ler) pattern. That means, that the data
model is completelly separated from its
screen exhibition. The data are stored in
the Model, that can be a GtkListStore
(for listings) or GtkTreeStore (for trees).
We'll use GtkListStore, instantiating it
as $this->model. Next, we'll create the
columns for View, to display the data.
For this purpose, we have the separate
GtkTreeViewColumn class. For each of
them we'll set the title, and create and
add (using the connect() method of each
renderer) a renderer, which is responsible
for visualisation of the data stored in the

Listing 4. The code of the ProductList Form, stored in the file
ProductNew.class.php
<?php

// Class ProductNew – Product Form for inclusion

class ProductNew extends GtkWindow{
...

 // Constructor Method – Creates the window and all the entries

 public function __construct(){
...

 // creates all the labels and entries, line by line

 $this->labels[0] = new GtkLabel('Code
 ');

 $this->entries[0] = new GtkEntry;
 $this->entries[0]->set_size_request(80,-1);

...

 // Creates the DataModel

 $store = new GtkListStore(Gtk::TYPE_STRING);
 // Append values to the DataModel

 $store->append(array('UN'));
...

 // Creates the EntryCompletion

 $completion = new GtkEntryCompletion();
 $completion->set_model($store);

 $completion->set_text_column(0);

 $this->entries[3]->set_completion($completion);

...

 // pack all the labels and entries to the vertical box

...

 // create the save button box

 $save_box= new GtkHBox();
 $button1 = GtkButton::new_from_stock(Gtk::STOCK_SAVE);

 $button1->connect('clicked', array($this, 'onSaveClick'));
 $save_box->pack_start(new GtkHBox, true);
...

 $expander = new GtkExpander('<i>Help</i>');
 $expander->set_use_markup(true);

 // Put a little help text inside the expander

 $help = new GtkLabel;
 $help->set_alignment(0.2, 0.5);

 $help->set_markup('<u>Filling the form</u>In order to fill the

 form you must not leave Code, Description or Price empty...');
 $expander->add($help);

 $expander->set_expanded(true);

 $vbox->pack_start($expander, false, false);

 parent::add($vbox);

 parent::show_all();

 }

 // Method onSaveClick – Save the screen data to the database

 public function onSaveClick(){
 // reading data from entries and writing it to the DB

 $conn = sqlite_open('data.db');

 $product->code = $this->entries[0]->get_text();

 $sql = "INSERT INTO products (code, description, amount," .

...

...

 }

 // Method Clear – Clear all the entries from the form.

 private function Clear(){
 for ($n=0; $n<=5; $n++){
 $this->entries[$n]->set_text('');

 }

 // focus the cursor to the first field

 parent::set_focus($this->entries[0]);

 }

Figure 6. Auto-completion

PHP-GTK2

PHP Solutions Nr 1/2006 www.phpsolmag.org 7

Techniki

model. For the last one, we will use the
GtkCellRendererText class, which allows
for displaying the text; there are some
other renderers to show other datatypes,
as image and checkboxes, and each
column can pack one or more of them.
When the renderers are added, we will
configure them properly, setting, among
others, the width and the editability of the
column, and connecting the callback func-
tion onEdit() with an event edited, which
happens on edition of any of the elements.

The next step will be to add the
columns to our list, what we'll do using
the append_column() method of our list
($this->list object).

Now it's important to add the Model to
the list, which we'll achieve with the set_
model() method of $this->list object. It
contains no data yet, because it will be ad-
ded later. Besides, a huge benefit of this
separation of layers in GtkTreeView is, that
one data model can be utilized by one or
more GtkTreeView objects, what allows us
to have the same data displayed in various
parts of our application. Our ProductList
class is almost ready. What we need yet,
is the method that will fill our model with
data. We'll name it showData(), and it will
be called from inside our Application
class. At first, it will make a database
connection and fetch the data. Then, it will
include the data into the model, using the
set() method of $this->model.

Another necessary method is the
callback onEdit(). It will be called, when
the user edits any cell. It will perform an
automatic update to the database, reco-
gnizing the correct row in the DB table by
the product code. And that's all about the
ProductList class.

The Editor
Another thing we want to add to our pro-
ject is the simple text editor, which opens
after the Edit option of the Edit menu is
clicked, and the onEdit() method of the
Application class is being called. Beside
edition of text, it should allow us to load
and save it. It will look as on the Figure 9.

We will create a class TextEditor,
which will be stored in the file TextEdi-
tor.class.php. We present it on the Listing
6. Its main component will be the text
window. For this purpose, we will use the
classes GtkTextView and GtkTextBuffer.
In PHP-GTK1 we used GtkText compo-
nent that is deprecated now. An important
thing is, that unlike PHP-GTK1, which

Listing 4. The code of the ProductList, which is stored in the ProductList.class.php
file

<?php

// Class ProductList – Product Listing

class ProductList extends GtkWindow
{

 private $window;

 private $model;

 private $list;

 public function __construct(){
...

 // creates the treeview

 $this->list = new GtkTreeView;
 $scroll->add($this->list);
 // creates the model, with 6 elements

 $this->model = new GtkListStore(Gtk::TYPE_STRING, Gtk::TYPE_STRING,
 Gtk::TYPE_STRING,Gtk::TYPE_STRING, Gtk::TYPE_STRING, Gtk::TYPE_STRING);

 // creates the columns

 $column1 = new GtkTreeViewColumn();
...

 $column1->set_title('Code');

...

 // defines the renderers

 $cell_renderer1 = new GtkCellRendererText();
...

 // connects the renderers when the user edit the data

 $cell_renderer2->connect("edited",array($this,'onEdit'),1,'description');
...

Figure 7. GtkTreeView in the tree mode

Figure 8. GtkTreeView in the list mode

PHP-GTK2

PHP Solutions Nr 1/2006www.phpsolmag.org8

Techniki

used to merge the content and its visuali-
sation in the same object, in PHP-GTK2
we store the data outside the widget, in
the GtkTextBuffer class we mentioned
about. So, the same text can be shown by
different GtkTextView widgets, the same
way it happens with GtkTreeView widget.
GtkTextBuffer also offers us iterators, that
is the possibility to bookmark some posi-
tions in the text.

We'll instantiate the GtkTextView
as $this->textview in the constructor
of the class. We will do the same to
the GtkTextBufffer, creating an object
$this->textbuffer. Next, we will join the
data model with the widget, using the set_
buffer() method of $this->textview.

As we said, we want to be able to
save and load (open) the text files. As
we seen it before on the Figure 9, the
editor will have a toolbar containing two
positions (with the proper icons): save
and open. To create the toolbar, we'll use
the GtkToolbar class, instantiating it as
$toolbar. Next, we will make the buttons
for saving and loading the data, creating
the respective objects of GtkToolButton
class. We'll set the label and stock icon
for each. The next step will be to connect
the event of clicking each button (clicked)
with the respective method. For loading it
will be openFile(), while for saving we'll
have a method called saveFile(). The
main part of our editor is ready: let's take
to the event methods.

In the first of them, openFile(), we
want to be able to choose a file from the
list. For this purpose, PHP-GTK2 gives us
GtkFileChooserDialog, which replaces the
GtkFileSelection from PHP-GTK1, being
more useful and easier to extend (see
Figure 10). It binds to GtkFileChooser
from the Gtk2 library, which is being used
practically by all Gnome-based applica-
tions, such as Evolution, Gnumeric, Ga-
im, Gimp and others. We will instantiate
GtkFileChooserDialog as $dialog, giving
it a caption Opening the file, and attaching
a set of responses, consisting of OK and
CANCEL. For each of the responses there
is a stock icon, too. If we confirm our will
to open the file, the text buffer will be cle-
ared (with $this->textbuffer->delete())
and the contents of the file will be inser-
ted at the cursor ($this->textbuffer-
>insertatcursor()). After that, the dialog
will be destroyed.

Another method is called saveFile().
Here, we will utilize the same

Listing 5. The code of the ProductList, continued

 // pack the renderers

 $column1->pack_start($cell_renderer1, true);

...

 // define the width

 $cell_renderer1->set_property('width', 50);

...

 // allow the user to edit the data

 $cell_renderer2->set_property('editable', True);

...

 // define the model position that the renderers will be linked

 $column1->set_attributes($cell_renderer1, 'text', 0);

...

 $this->list->append_column($column1);
...

 $this->list->set_model($this->model);
 $this->list->show_all();
...

 }

 // Method showData – List all Products from database

 public function showData(){
 // opens the database and reads all data in the while() loop

 $conn = sqlite_open('data.db');

 $query = sqlite_query($conn, 'select code, description, amount,'.

 ' unit, cost, price from products');

 while ($data = sqlite_fetch_array($query)){
 $iter = $this->model->append();

 $this->model->set($iter, 0, $data['code'],

 1, $data['description'], 2, $data['amount'], 3, $data['unit'],

 4, $data['cost'], 5, $data['price']);

 }

 sqlite_close($conn);

 }

 // Method onEdit – Called when the end user changes the data

 public function onEdit($cell_renderer, $path, $new_text, $column_number,
 $column_name){

 // get the selection

 $treeselection = $this->list->get_selection();
 list($model, $iter) = $treeselection->get_selected();
 // set the new value to the iterator

 $model->set($iter, $column_number, $new_text);

 // get the first column

 $code = $this->model->get_value($iter, 0);

 // opens the database and executes the update

 $conn = sqlite_open('data.db');

 $query = sqlite_query($conn, "update products set " .

 "$column_name='$new_text' where code='$code'");

 sqlite_close($conn);

 }

}

?>

Figure 9. A simple text editor

PHP-GTK2

PHP Solutions Nr 1/2006 www.phpsolmag.org 9

Techniki

GtkFileChooserDialog for chosing the
name and location of the file to save. As
in the previous case, it will have two but-
tons: OK and CANCEL. When the user
clicks on OK, the method will read the text
from the buffer using $this->textbuffer-
>get_text() method. Next, it will save
the file at the chosen (or inputted) name,
using file_put_contents(). After that, as
in the previous method, the dialog will be
destroyed.

Who Made Me: the Use of About
Dialog
The Last thing to do in our interface is to
create the About dialog, that will pop up
after the Help position in the Help menu
is clicked. We will create a class named
AboutDialog and store it in the file Abo-
utDialog.class.php. We present it on the
Listing 7.

Here we will make the use of excep-
tions and image manipulation. As usually,
the constructor will start with setting some
parameters for the dialog. Next, we want
to load an image named gnome.png and
display it in the dialog (see Figure 11). For
this purpose, we will use teh GdkPixbuf
class. It deals with the most popular image
formats like PNG, JPEG and others, what
releases us from the task of additional
image converting (eg. with the use of
third-party tools). In the PHP-GTK1, this
class existed, but its use was optional.
It's not optional anymore in GTK2, having
become a part of the set of available na-
tive classes. It can be used for all image
manipulation tasks, including the use as
icons in the toolbars and menus. And we
don't need to employ the XPM (XpixMap)
format anymore, which was the case with
PHP-GTK1, if Gdkpixbuf wasn't used.

Thus, we will instantiate the GdkPixbuf
class as $pixbuf, passing the path of the
file gnome.png to its constructor. Next, we
will create an image widget of the class
GtkImage. We will name it as $imagem.
Using its method set_from_pixbuf(), we
will copy the content of $pixbuf to it.

We want to be sure, however, that the
file will load, and if it doesn't exist, that it
will not cause application to terminate by
error. Therefore, we'll embrace all of tho-
se bitmap-related operations in the try{}
block of the try{}..catch{} construction.
PHP-GTK2 cooperates with the exception
system, which has been introduced in
PHP5, generating exceptions under some
situations like errors occuring during the

Listing 6. The code of the text editor, stored in the file TextEditor.class.php

<?php

// Class Editor – A little text exitor

final class TextEditor extends GtkWindow{
 private $textview;

 private $textbuffer;

 function __construct(){
 // creates the window

...

 // Creating the Toolbar

 $toolbar = new GtkToolbar;
 // Creating the save and open buttons

 $save = new GtkToolButton;
 $save->set_label('save');

 $save->set_stock_id('gtk-save');

 $save->connect('clicked', array(&$this, 'saveFile'));
...

 // Insert the buttons on toolbar

 $toolbar->insert($open, 0);

 $toolbar->insert($save, 0);

 $vbox->pack_start($toolbar, false, false);

...

 // Creating the duo TextView/TextBuffer;

 $this->textview = new GtkTextView;
 $this->textbuffer = new GtkTextBuffer;
 $this->textview->set_buffer($this->textbuffer);

...

 }

 // Method openFile – Shows the FileDialog and puts the file contents

 // inside the TextBuffer

 public function openFile(){
 // Creates the FileChooserDialog

 $dialog = new GtkFileChooserDialog('Opening the file', NULL,
 Gtk::FILE_CHOOSER_ACTION_OPEN,array(Gtk::STOCK_OK,Gtk::RESPONSE_OK,
 Gtk::STOCK_CANCEL, Gtk::RESPONSE_CANCEL));

 // Shows the FileChooserDialog

 $response = $dialog->run();

 if ($response == Gtk::RESPONSE_OK){ // if the user has clicked OK
 //Clear the TextBuffer and Insert the file's content into the TextBuffer

 $first = $this->textbuffer->get_start_iter();

 $end = $this->textbuffer->get_end_iter();

 $this->textbuffer->delete($first, $end);

 $this->textbuffer->insert_at_cursor(file_get_contents(

 $dialog->get_filename()));

 }

 $dialog->destroy();

 }

 // Method saveFile – Shows the FileDialog and write the TextBuffer

 // contents to the selected file.

 public function saveFile(){
 // Creates the FileChooserDialog

 $dialog = new GtkFileChooserDialog('Saving the file', NULL,
 Gtk::FILE_CHOOSER_ACTION_SAVE,array(Gtk::STOCK_OK,Gtk::RESPONSE_OK,
 Gtk::STOCK_CANCEL, Gtk::RESPONSE_CANCEL));

 // Shows the FileChooserDialog

 $response = $dialog->run();

 if ($response == Gtk::RESPONSE_OK){ // if the user has clicked OK
 // Get the TextBuffer content and write it to the file

 $first = $this->textbuffer->get_start_iter();

 $end = $this->textbuffer->get_end_iter();

 $text = $this->textbuffer->get_text($first, $end);

 file_put_contents($dialog->get_filename(), $text);

 }

 $dialog->destroy();

 }

}

?>

PHP-GTK2

PHP Solutions Nr 1/2006www.phpsolmag.org10

Techniki

object construction, in methods that use
the Gerror mechanism, such as static con-
structors like GdkPixbuff::new_from_file()
and in codepage conversions. In our case,
if Logo is not found, it'll generate a excep-
tion controlled bye the main flow of our
AboutDialog class.

Our application is ready and you may
test it.

Summary
The example we shown is quite simple,
but it illustrates the most important novel
aspects of PHP-GTK2; the best way to
learn more is to start expanding it. PHP-
GTK2 is a huge step forward, compared
to the PHP-GTK1, and PHP5 plays an
important part in making it a successful
interface: without its new, better object
model many things would simply be
impossible. Together, PHP-GTK2 may
make PHP a serious choice for the pro-
grammers, who make the client-side, GUI
applications.

Listing 7. The code of the AboutDialog class, stored in the file
AboutDialog.class.php

<?php

// Class AboutDialog – Show the Information about the current application

final class AboutDialog extends GtkWindow{
 public function __construct($software, $text){
...

 // try to load the image

 try{

 $pixbuf = GdkPixbuf::new_from_file('images/gnome.png');

 $imagem = new GtkImage;
 $imagem->set_from_pixbuf($pixbuf);

 $vbox->pack_start($imagem);

 }

 catch{ (PhpGtkGErrorException $error)

 // if any error ocurrs, show it on the screen

 $dialog = new GtkMessageDialog(null, Gtk::DIALOG_MODAL,
 Gtk::MESSAGE_ERROR,Gtk::BUTTONS_OK, $error->message);

 $response = $dialog->run();

 $dialog->destroy();

 return;
 }

 // show the text about the application

 $this->label = new GtkLabel($text);
 $vbox->pack_start($this->label);

 // creates the "Close" button

 $this->button = new GtkButton('Close');
 $this->button->connect('clicked', array($this, 'onClose'));
 $vbox->pack_start($this->button, false, false);

 parent::show_all();

 }

 // Method onClose – Closes the window

 public function onClose(){
 parent::destroy();

 }

...

}

?>

Figure 10. File selection

Figure 11. The About dialog

What you should know...
Pablo Dall'Oglio (pablo@dallo-

glio.net) is author of the first book
about PHP-GTK of the world. He is
also author of Agata Report (http:
//www.agata.org.br) Tulip Editor
(http://tulip.solis.coop.br) and Coor-
dinator of GNUTeca project (http://
www.gnuteca.org.br) (an open source
software for library management).

